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“Mathematical analysis is a coherent symphony of the infinite.”
(David Hilbert)

1 Introduction
To get around the lognormal assumption for asset prices and its consequences, we
can use other methods. Rather than calculating the discounted expectation of the
final payoff directly, it may be more convenient to use the Fourier transform and the
characteristic function of the Lévy process, which is easier to manipulate than the
density function itself.

So, by using Fast Fourier Transform (FFT) algorithms, we can carry out the evalua-
tion of options in an efficient way. We therefore incorporate a more general and realistic
structure of asset returns, such as excess kurtosis and stochastic volatility.

In this paper, we highlight Carr and Madan’s fast Fourier transform approach to
valuing European call options. We restrict ourselves to applications in the context of
continuous diffusion processes. Another article will deal with the case of jump processes
(Merton and variance-gamma).

2 Fourier transform
Let f ∈ L1(Rd). The Fourier transform of f , denoted f̂ , is defined on Rd by:

∀ξ ∈ Rd, f̂(ξ) =

∫
Rd

f(x)e−ixξ dx. (1)

This function is linear and well defined since, ∀f ∈ L1(Rd),∀ξ ∈ Rd,∫
Rd

|f(x)e−ixξ| dx =

∫
Rd

|f(x)| dx = ∥f∥L1(Rd) < ∞. (2)

For X a random variable with density fX with respect to the Lebesgue measure on
Rd, its characteristic function is defined as: ϕX : t ∈ R 7→ E(eitX). Using the transfer
theorem, we obtain:

ϕX(t) =

∫
Rd

eitxf(x) dx = f̂(−t). (3)
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Example 1 (Fourier transform of indicator function): let a, b ∈ R and f = 1[a,b]. The
Fourier transform of f is:

f̂(ξ) =

∫ b

a

e−ixξ dx =


2e−i a+b

2 ξ sin( b−a
2

ξ)
ξ

, if ξ ̸= 0

b− a, if ξ = 0
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Figure 1: f = 1[−2,2] and its Fourier transform

Example 2 (Cauchy distribution): let X be a random variable following a Cauchy
distribution with parameter 1 i.e X ∼ Cau(1). For ξ ∈ R, we have:

ϕX(ξ) = E(eiXξ) =
1

π

∫
R

eixξ

1 + x2
dx =

1

π
f̂(−ξ) = e−|ξ|.
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Figure 2: Density and characteristic function for X ∼ Cau(1)

Example 3 Let f(x, y) = e−(x2+y2). The Fourier transform is:

f̂(ξ, η) =

∫
R2

f(x, y)e−i(xξ+yη) dx dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)e−i(xξ+yη) dx dy
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i.e:
f̂(ξ, η) =

(∫ ∞

−∞
e−x2

e−ixξ dx

)(∫ ∞

−∞
e−y2e−iyη dy

)
with: ∫ ∞

−∞
e−x2

e−ixξ dx = e−
ξ2

4
√
π

we have:

f̂(ξ, η) =

(√
πe−

ξ2

4

)(√
πe−

η2

4

)
= πe−

ξ2+η2
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Figure 3: Density and fourier transform for f
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3 Properties

3.1 Translation:

let f ∈ L1(Rd) and a ∈ Rd. Then,

τ̂af = ξ 7→ e−iaξf̂(ξ).

Proof: For ξ ∈ Rd,

τ̂af(ξ) =

∫
Rd

f(x− a)e−ixξ dx =

∫
Rd

f(u)e−i(u+a)ξ du = e−iaξf̂(ξ).

□

3.2 Continuity:

∀f ∈ L1(Rd), f̂ is uniformly continuous on Rd. So that it’s continuous.

3.3 Fourier operator on L1(Rd)):

Consider the Fourier operator on L1(Rd) defined by:

F1 : (L
1(Rd), ∥ · ∥L1(Rd)) → (C0

0(Rd,R), ∥ · ∥∞)

f 7→ f̂

then, F1 is a continuous linear operator with subordinate norm equal to 1.

Proof: It is clearly a linear operator and |||F1|||Lc(L1,C0
0 )
≤ 1. We know that:

∥f∥L1(R) =

∫
R

dx

1 + x2
= π.

Moreover,

∥ξ 7→ πe−|ξ|∥L∞(R) = π.

□

3.4 Convolution:

Let f, g ∈ L1(Rd) be two functions. Then, they are convolvable, i.e., for almost every
x ∈ Rd,

y ∈ Rd 7→ f(y)g(x− y) ∈ L1(Rd).

Moreover, f ∗ g ∈ L1(Rd) and we have the following relation:

f̂ ∗ g = f̂ ĝ.
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Remarque 1 If X and Y are two independent random variables with densities, then
the density of X + Y is given as fX ∗ fY . Thus,

ϕX+Y = f̂X+Y (−·) = ̂fX ∗ fY (−·) = f̂X(−·) · f̂Y (−·) = ϕXϕY .

3.5 Duality:

Let f, g ∈ L1(Rd), then ∫
Rd

f(x)ĝ(x) dx =

∫
Rd

f̂(x)g(x) dx.

3.6 Fourier transform of the Derivative:

Let f ∈ L1(Rd), and let j ∈ {1, . . . , d} such that ∂xj
f exists and is in L1(Rd). Then,

we have the following relation:

∀ξ ∈ Rd, ∂̂xj
f(ξ) = iξj f̂(ξ).

3.7 Derivative of the Fourier transform:

Let f ∈ L1(Rd). Suppose that for j ∈ {1, . . . , d}, x 7→ xjf(x) ∈ L1(Rd). Then, f̂ has a
partial derivative with respect to ej, and the following relation holds:

∂ξj f̂(ξ) = −i x̂jf(x)(ξ).

4 Consequences

4.1 Fourier transform of fa:

Let a > 0, we define: fa : x ∈ R 7→ e−
ax2

2 . Then, we have:

∀ξ ∈ R, f̂a(ξ) =

√
2π

a
e−

ξ2

2a .

4.2 Fourier inversion in L1(Rd):

Let f ∈ L1(Rd) such that f̂ ∈ L1(Rd). Then,

f(x) =
1

(2π)d

∫
Rd

f̂(ξ)eixξdξ, almost everywhere in x.

4.3 Injectivity of the Fourier operator:

The Fourier operator F1 is injective.

Proof: Let f ∈ L1(Rd) such that F1(f) = 0. Then, f̂ = F1(f) = 0 ∈ L1(Rd). By
Fourier inversion, we have:
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f(x) =
1

(2π)d

∫
Rd

f̂(ξ)eixξdξ = 0, almost everywhere in x ∈ Rd.

□

4.4 Non-surjectivity of the Fourier operator:

The Fourier operator F1 is not surjective.

Remarque 2 The only solution to the equation f∗f = f in L1(Rd) is the zero function.

4.5 About L2(Rd)

To define the Fourier transform on L2(Rd), we can’t use the definition given for L1(Rd).
For this, we will focus on the properties of the Fourier transform on L1(Rd) ∩ L2(Rd)
and then extend the result by density.

5 Lévy processes
An adapted real-valued stochastic process Xt, with X0 = 0, is called a Lévy process if
it observes the following properties:

• Independent increments: for every increasing sequence of times t0, t1, . . . , tn, the
random variables, Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

• Time-homogeneous: the distribution of {Xt+s−Xs : t ≥ 0} does not depend on s.

• Stochastically continuous: for any ϵ > 0, P [|Xt+h −Xt| > ϵ] → 0 as h → 0.

• Cadlag process: it is right continuous with left limits as a function of t.

Lévy processes are a combination of a linear drift, a Brownian process, and a jump
process. When the Lévy process Xt jumps, its jump magnitude is non-zero. The Lévy
measure w of Xt defined on R\{0} dictates how the jump occurs. In the finite-activity
models, we have: ∫

R
w(dx) < 1.

In the infinite-activity models, we observe:∫
R
w(dx) = 1.
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And the Poisson intensity cannot be defined. Loosely speaking, the Lévy measure
w(dx) gives the arrival rate of jumps of size (x, x+ dx).

The characteristic function of a Lévy process can be described by the Lévy-Khinchine
representation:

ϕ(u) = E[eiuXt ] = exp

(
iau− 1

2
σ2tu2 + t

∫
R\{0}

(
eiux − 1− iux1|x|<1

)
w(dx)

)
,

where: ∫
R
min(1, x2)w(dx) < ∞, a ∈ R, σ2 ≥ 0.

We identify a as the drift rate and σ as the volatility of the diffusion process. Here,
ϕ(u) is called the characteristic exponent of Xt. Actually, Xt has the same distribution
as tX1. All moments of Xt can be derived from the characteristic function since it
generalizes the moment-generating function to the complex domain. Indeed, a Lévy
process Xt is fully specified by its characteristic function ϕ.

Here is a simplified diagram to give you an overview:

Exponential
Lévy models

Continuous exponential
Lévy models: no jumps
(example: BS model)

Finite activity
exponential

Lévy models:
continuous

with occasional
discontin-
uous paths
(example:

Merton model)

Infinite activity
exponential
Lévy mod-
els: pure

jump process
(Example:
VG model)
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Figure 4: Lévy processes

6 Geometric Brownian Motion (GBM)
Let the filtered probability space (Ω,F, (Ft)t∈[0,T ],P) on which is defined the process
of prices (St)t∈[0,T ] and a risk-neutral probability Q equivalent to P. Since there is no
arbitrage opportunity and the market is complete, this risk-neutral probability exists.

The dynamics of underlying asset under the risk-neutral measure Q are given by
the stochastic differential equation (SDE):

dSt = rStdt+ σStdW
Q
t , (4)

where:

• St: price of the asset at time t.

• r: risk-free rate, σ: volatility.

• dWQ
t : increment of a Wiener process.

We therefore know that the solution (derived using Itô’s lemma) is given by:

St = S0 exp

((
r − 1

2
σ2

)
t+ σWQ

t

)
. (5)

where S0 is the initial price of the asset at t = 0.

In fact, St ∼ LogN(η, ζ2), i.e Xt = log(St) ∼ N(η, ζ2). and St = eXt

With: η = log(S0) + (r − σ2

2
)t and ζ2 = σ2t.

The payoff of a European call option with strike price K and maturity T is given
by:
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C = e−rTEQ [
(ST −K)+

]
. (6)

where (x)+ = max(x, 0).
Using the information available up to valuation date t, we have:

Ct = e−r(T−t)EQ [
(ST −K)|F+

t

]
. (7)

Remarque 3 (About the Radon-Nikodym Theorem) The Radon-Nikodym theorem pro-
vides a way to change from the real-world probability measure P to the risk-neutral
measure Q. We have the following relationship:

LT =
dQ
dP

and ∀t ∈ [0, T ], Lt = EP[LT |Ft].

In particular, if dSt

St
= µdt + σdBt, let λ = µ−r

σ
, with λ: market price of risk. We

define Wt = Bt + λt, t ∈ [0, T ], thanks to Girsanov, the process (Wt)t∈[0,T ] is brownian
motion under Q such as:

dQ
dP

= e−λBT− 1
2
λ2T (8)

The price of the European call (with no dividend) option is:

C = S0N(d1)−Ke−rTN(d2). (9)

where:

d1 =
ln
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

, (10)

d2 = d1 − σ
√
T , (11)

and N(·) is the cumulative distribution function (CDF) of the standard normal
distribution.

Remarque 4 in the event of a dividend q, we have, under P, the SDE:

dSt = (µ− q)Stdt+ σStdBt. (12)

Then under Q, the price of the European call (with dividend) option is:

C = S0e
−qTN(d̃1)−Ke−rTN(d̃2). (13)

where:

d̃1 =
ln
(
S0

K

)
+
(
r − q + σ2

2

)
T

σ
√
T

, (14)

d̃2 = d̃1 − σ
√
T , (15)
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Remarque 5 (Put option price via Put-Call parity)

The put-call parity relationship for European options is:

C − P = S0 −Ke−rT . (16)

From this relationship, we can find the price of the put (with no dividend) option as
follows:

P = Ke−rTN(−d2)− S0N(−d1) (17)
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Figure 5: GBM paths
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7 Option Call price and Fourier inversion
Let X random variable and f its density. the characteristic function

ϕX(ξ) = E
[
eiξX

]
=

∫
R
eiξxfX(x)dx = f̂X(−ξ)

exists because |eiξx| = 1,
∫
R |fX(x)|dx = 1 (f is a density of probability), and:∣∣∫

R e
iξxfX(x)dx

∣∣ ≤ ∫
R |e

iξxfX(x)|dx < ∞.

The inverse Fourier transform is given by:

fX(x) =
1

2π

∫
R
e−iξxϕX(ξ)dξ

.
By inversion theorem, we have:

FX(x) =
1

2
− 1

2π

∫
R
e−iξxϕX(ξ)

1

iξ
dξ

and by Gil Pelaez formulas,

FX(x) =
1

2
− 1

π

∫ ∞

0

Re

[
e−iξxϕX(ξ)

iξ

]
dξ

. Then the density is:

fX(x) =
1

π

∫ ∞

0

Re

[
e−iξxϕX(ξ)

]
dξ

.

In fact, the initial price of a call option can be written as:

C = S0Π1 −Ke−rTΠ2, (18)

where Π1,Π2 are the option’s delta and the risk-neutral probability of finishing in
the money respectively. For example (BS model) we have: Π1 = N(d1) and Π2 = N(d2).

Now we deduce Π1 and Π2 using the Gil Pelaez formula like this:

Π1 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iξκϕX(ξ)

iξ

]
dξ, (19)

and

Π2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iξκϕX(ξ − i)

iξϕX(−i)

]
dξ. (20)

With κ = log(K
St
) and ST = St exp(XT ).
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Example 4 :

1 # Initialization parameters
2 S0 = 55.0 # Spot stock price
3 K = 50.0 # Strike price
4 r = 0.04 # Risk-free rate
5 T = 1.0 # Maturity in years
6 std = 0.3 # Volatility
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Figure 6: European call option price using 3 methods

Method Execution Time (s)
Monte Carlo 0.08095145225524902

Black-Scholes 0.06067371368408203
Fourier Inversion 0.018828630447387695

Summary of Option Pricing Methods
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8 Fast Fourier transform (FFT)
The FFT is a numerical algorithm used to compute the Discrete Fourier Transform
(DFT) of a sequence of data efficiently.

The DFT applies to a discrete deterministic signal, by transforming this signal into
a series of frequency components corresponding to the amplitudes and phases of the
different frequencies present in the signal. This is method that transforms a sequence
of N points into a series of frequency components. DFT allows transforming from the
time domain (or spatial domain) to the frequency domain, which is useful for analyzing
the frequencies present in a signal or dataset.The DFT is expressed by the following
formula:

X(k) =
N−1∑
n=0

x(n) · e−i 2π
N

kn, k = 0, 1, . . . , N − 1. (21)

where:

• x(n) represents the input values of the sequence (time or space, for instance).

• X(k) represents the output values (the frequency components).

• N is the total number of points in the series.

• e−i 2π
N

kn is the complex exponential encoding the frequency.

Remarque 6 (Computational Complexity)

The DFT has a calculation complexity of O(N2), because it requires each point in
the signal to be multiplied by a complex exponential coefficient for each frequency.

The FFT, on the other hand, is an algorithm that exploits the symmetries and
properties of complex exponentials to calculate the DFT much more quickly, with a
complexity of O(NlogN). This reduction in complexity is particularly useful.

9 Carr-Madan approach
The method solves the singularity problem at ξ = 0 in the Fourier inversion method.
The characteristic function of the probability density of the price of a risk-neutral asset
is known analytically. From this function, we can quickly calculate option prices using
the Fourier transformation via the FFT.

Let κ = logK, st = logSt, and ΦT be the characteristic function of the terminal
log-asset price sT .
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We define a modified call price:

cT (κ) = eακCT (κ). (22)

With CT (κ) the initial price of the call option with maturity T and log-strike κ. For
a well-chosen α, eακ solves singularity problems.

If ϵT is the Fourier transform of cT (κ), we have:

ϵT (ξ) =
e−rTϕT (ξ − (α + 1)i)

α2 + α− ξ2 + i(2α + 1)ξ
. (23)

Then, we apply the inverse Fourier transform to obtain:

CT (κ) =
e−ακ

π

∫ +∞

0

e−iξκϵT (ξ)dξ. (24)

But then we use the fast Fourier transform algorithm in the quadrature of the inte-
gral, if γ is the spacing size, we determine the uniform partition of N points like ξj = γj,
for j = 0, 1, ...N − 1.
We truncate the improper integral at Nγ. Then we use Simpson’s rule to increase
precision.

Let b = Nλ
2

, λγ = 2π
N

, κm = −b+λm, for m = 0, 1, ..., N −1, application of the FFT
leads to:

C(κm) ≈
e−ακm

π

N−1∑
j=0

e
−2πijm

N eibξjϵT (ξj)
γ

3
[3 + (−1)j+1 − δj]. (25)

with the Kronecker symbol:

δj =

{
1 if j = 0

0 otherwise

Let’s restrict ourselves to the continuous market model and let’s apply the FFT
algorithm to the BSM model.

Example 5 : Assume the following parameters:

1 # Initialization parameters
2 S0 = 100.00 # Spot stock price
3 K = 100.00 # Strike price
4 r = 0.05 # Risk-free rate
5 T = 1.0 # Maturity in years
6 std = 0.2 # Volatility
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Figure 7: Analytical Black-Scholes vs Fourier integral method
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Figure 9: Convergence comparison

For a given accuracy, the integral Fourier method achieves a low error with rea-
sonable integration limits. The FFT method is useful for fast calculations over large

15



ranges, but can be less accurate for modest sample sizes.

To closely resemble how options are listed in financial markets, where K is given
and S0 is observed, we use a range of strike prices to visualize how the option value
changes. So, for a given spot price S0, the higher the strike price K, the less valuable
the option becomes.

Option pricing based on the Fourier method combines the generality of the risk-
neutral pricing approach with the convenience of a closed pricing formula as in the
BSM configuration. The speed and precision of these methods are unequivocal.
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